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The unsteady boundary layer induced by the motion of a rectilinear vortex above an 
infinite plane wall is calculated using interacting boundary-layer methods. The 
boundary-layer solution is computed in Lagrangian variables since it is possible to 
compute the flow evolution accurately in this formulation even when an eruption 
starts to evolve. Results are obtained over a range of Reynolds numbers, Re. For the 
limit problem Re+ co (studied in Part l) ,  a singularity develops in the non- 
interacting boundary-layer solution at finite time. The present results show that the 
interacting boundary-layer calculations also terminate in a singularity at a time 
which is earlier than in the limit problem and which decreases with decreasing 
Reynolds number. The computed results are compared with the length- and 
timescales predicted by recent asymptotic theories and are found to be in excellent 
agreement. 

1. Introduction 
This study is the second part of an investigation into the viscous response induced 

near a solid wall by the motion of a vortex above the surface when the flow is at high 
Reynolds number. A principal motivation of this work is to understand the basic 
physical mechanisms of turbulence production and regeneration near a solid surface, 
as described in Part 1 (Peridier, Smith & Walker 1991). It is widely believed (see, for 
example, Head & Bandyopadhyay 1981; Perry & Chong 1982; Acarlar & Smith 
1987a, b ;  Walker et al. 1989; Smith et al. 1990; Walker 1990a, b)  that the convected 
hairpin vortex is a central element in the structure of the turbulent boundary layer 
and, further, that the moving vortex provokes a discrete eruption of the turbulent 
wall layer whenever such a vortex is in the proximity of the surface for a sufficient 
period of time (Walker 1990a, b ;  Smith et al. 1991). In this study, a model problem 
is considered corresponding to a rectilinear vortex in motion above an infinite plane 
wall in an otherwise stagnant fluid. This configuration is addressed because it 
represents the simplest type of vortex-induced boundary-layer eruption and the 
general nature of the subsequent interaction with the external flow is reasonably 
well-documented from experiments (Harvey & Perry 1971 ; Walker et al. 1987; Chu 
& Falco 1988). 

If K denotes the vortex strength and v is the kinematic viscosity, a Reynolds 
number for the problem may be defined by Re = K / ( ~ v ) .  In Part 1 of this study the 
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evolution of the boundary-layer flow for the limit problem Re + co was considered. 
It was demonstrated that flow near the surface focuses abruptly into an erupting 
spike and that a singularity evolves a t  finite time. Furthermore, the terminal 
singularity structure is the same as that found by Van Dommelen & Shen (1980) for 
the impulsively started circular cylinder and corresponds to what Van Dommelen 
(1981) has referred to as ‘upstream-slipping separation ’. The terminal singularity is 
also discussed by Elliott, Cowley & Smith (1983), who point out that it may be a 
generic state for many unsteady two-dimensional flows. The dynamics of the 
phenomenon are such that once the boundary layer starts to focus into an eruptive 
spike, the equations governing the local processes become independent of the 
external pressure gradient that originally initiated the phenomenon. This view is 
supported by extensive numerical work on a variety of unsteady two-dimensional 
boundary-layer problems (see, for example, Doligalski & Walker 1984 ; Ece, Walker 
& Doligalski 1984; Ersoy & Walker 1985, 1986) which ultimately terminate in the 
abrupt evolution of a spike in the displacement thickness. 

In a limit analysis (Re+ m), the pressure distribution is computed from an inviscid 
solution and is assumed prescribed for the boundary-layer flow. If the flow is 
initiated impulsively, for example, the flow field starts out as double-structured with 
an outer inviscid region and a thin boundary layer ; in these circumstances a classical 
non-interactive calculation method is appropriate, at  least initially. However, as 
soon as strong boundary-layer growth develops, it is necessary to account for an 
interaction with the external inviscid flow. Effectively, a singularity develops in the 
unsteady boundary-layer solution in the limit problem Re+ co (Part 1) because of 
the attempt to treat the pressure gradient as prescribed for an indefinite period of 
time. The evolution of a singularity thus tends to be indicative of the need to develop 
an interactive strategy, and there are at  least two ways in which this may be carried 
out. The first of these is to continue consideration of the limit problem Re+ m and 
to determine the Reynolds-number dependence of the length- and timescales that 
develop locally as the boundary-layer solution breaks down, with the onset of an 
eruption of the surface flow. The second alternative is to develop an interacting 
boundary-layer (IBL) approach in which a finite but large value of the Reynolds 
number is adopted and the influence of the thickening boundary layer is accounted 
for. 

Consider fist a continuation of a limit analysis. Van Dommelen & Shen (1982) and 
Elliott et al. (1983) have described the singularity which is the terminal state of the 
classical boundary-layer solution. As the singularity forms (see, for example, Van 
Dommelen & Shen 1980 ; Part l), the displacement thickness develops a sharp spike 
locally as the flow proceeds toward a narrow, focused boundary-layer eruption (see, 
for example, figure 4 of Part 1). The boundary layer bifurcates into three regions 
consisting of two passive shear layers, one near the surface and one moving rapidly 
away from the wall; sandwiched in between there is an explosively growing 
intermediate region where the dynamics are primarily nonlinear and inviscid (see 
figure 5a  of Part 1). The singularity generally forms off the wall at some position 
along a zero-vorticity line, whose presence a t  some earlier time within the boundary- 
layer flow is a necessary condition for an eruption to subsequently occur. Assume 
that the singularity in the boundary-layer solution occurs at time t, and a streamwise 
location 2,. A t  the time of formation, the singularity is moving in most cases and we 
assume what is apparently the most common situation where the motion is upstream 
relative to the local inviscid flow. Using the terminology of Van Dommelen & Shen 
(1982), this situation is referred to as ‘upstream-slipping separation ’ ; in the notation 
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of Elliott et al. (1983), the velocity of the singularity is - K ,  with K > 0. An 
important aspect of the terminal singular structure is that it is independent of the 
local mainstream pressure gradient. Consequently, a wide variety of external 
pressure fields can lead to the evolution of a zero-vorticity line within the boundary 
layer and a subsequent focusing of the flow toward an eruption. However, the flow 
near the eruption rapidly ‘forgets ’ the pressure distribution which initiated the 
process, and the clear suggestion of the work of Elliott et al. (1983) is that the 
terminal singularity structure is a generic state reached by most two-dimensional 
erupting boundary layers. 

An important question relates to how the singularity is relieved and Elliott et aE. 
(1983) argue that the pressure gradient in the mainstream induced by the explosively 
growing displacement- thickness spike starts to influence the boundary-layer solution 
in the intermediate region (within the spike) when t , - t  is O(Re-6). This stage of 
development will be referred to here as the f i s t  interactive stage, for which Elliott 
et al. (1983) define the following scaled variables: 

(x-x,)-K(ts- t )  = Re-AX,, Y = Re-hq, t - t ,  = Re-%,, (1) 

with dependent variables 

u = - K + R ~ - ~ u , ( x , ,  Y,, t , ) ,  p = Re-fiq(X,, Y,, t , ) .  (2) 

Here ( x ,  Y) are dimensionless Cartesian coordinates with corresponding velocity 
components (u, w) and p is the pressure. A schematic diagram of this first interactive 
stage is given in figure 1. Region I is a passive region near the wall while region 111 
is a passive shear layer which is moving rapidly away from the wall with position 
described by & = b,(X,, t,). To match to the terminal boundary-layer structure 
described in $7 of Part 1, it can be shown that the required initial condition for the 
first interactive stage is PI - 28(2) ( -tl)” as t ,  +- GO. Equations (1) and (2) define 
variables in the central region I1 where the governing equations are 

The matching to the upper and lower passive layers requires (for the symmetric 
structure assumed by Elliott et al. 1983; see Part 1 )  that 

as Y,+& 
4 

u1 - (Y,-bl)2 
as Y , + O ;  

4 u1 - - J? (4) 

The growth of region I1 provokes a local response in the inviscid flow in region IV 
and leads to the following pressure-displacement relation : 

where the right-hand side of ( 5 )  is a Cauchy principal value integral. The unusual 
boundary conditions in (4) pose computational difficulties, and to date attempts to 
produce numerical solutions for this first interactive stage have been unsuccessful. 
However, it seems likely that this stage will also terminate in a singularity and that 
it may be necessary to go through a number of complex interactive stages with 
increasingly shorter timescales before the erupting boundary-layer fluid penetrates a 
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FIGURE 1.  Schematic diagram (not to scale) of the first interactive stage. 

distance O(1) away from the wall. In view of the apparent complexity of the limit 
analysis, the second alternative of interacting boundary-layer (IBL) theory appears 
worth pursuing. 

The IBL approach for steady flows has been well developed in recent times. It is 
well known (see, for example, Stewartson 1974; Smith 1982) that the IBL 
methodology, when properly applied, relieves the Goldstein ( 1948) singularity that 
is known to occur in the solution of the steady boundary-layer equations when the 
mainstream pressure gradient is adverse and prescribed. Although Elliott et al. 
(1983) have shown that the unsteady separation singularity is not of the Goldstein 
type (as proposed by Sears & Telionis 1971, 1975), there has been interest in recent 
times in using an unsteady IBL approach to try to relieve the singularity and carry 
the boundary-layer computations on further in time. The basis of the conventional 
IBL methodology is to assume that perturbations induced by the boundary layer on 
the external flow field are small and this leads to a Cauchy principal value integro- 
differential equation relating the mainstream pressure to the displacement thickness. 
It is clearly evident, from a variety of experimental studies on vortex-induced 
separation (see, for example, Harvey & Perry 1971 ; Walker et al. 1987), that the IBL 
approach can be valid for only a limited period of time since the observed 
viscous-inviscid interactions are strong and involve O( 1) changes in the external flow 
field. Nevertheless, the approach is worth pursuing and has been considered for : (i) 
the impulsively started circular cylinder by Henkes & Veldman (1987) and Riley & 
Vasantha (1989) ; (ii) vortex-induced separation by Chuang & Conlisk (1980), Conlisk 
(1989) and Riley & Vasantha (1989) ; and (iii) the boundary layer on a pitching airfoil 
by Cebeci, Khattab & Schimke (1988). The results of these studies have been 
somewhat inconclusive. Henkes & Veldman (1987) and Riley & Vasantha (1989) 
tentatively conclude that the IBL approach may postpone or perhaps relieve the 
separation singularity. On the other hand, the IBL calculations of Chuang & Conlisk 
(1989) could not be continued beyond a certain time, and they indicated that this 
may be due to the onset of a singularity. The pitching airfoil computations of Cebeci 
et al. (1988) were also terminated at a finite time for reasons which were not 
explained. 

Some of the cited computational experience with unsteady IBL calculations seem 
currently at variance with a theoretical investigation of Smith (1988a), who 
concluded that a singularity can occur a t  finite time in any unsteady IBL 
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FIQURE 2. Schematic of the three-zone region, with typical velocity profile, for the interactive 
singularity structure. 

formulation (see also Brown, Cheng & Smith 1988; Brotherton-Ratcliffe & Smith 
1987). A brief description of the main features of Smith's ( 1 9 8 8 ~ )  asymptotic solution 
will be given here in order to facilitate later comparison with the results of this study. 
Assume that a singularity can occur at time t ,  and a t  x = x ,  and consider a thinning 
zone which is moving toward x, with speed C (where C is to be found) ; the streamwise 
scaling adopted by Smith ( 1 9 8 8 ~ )  is 

c = ( x - x , + C T ) T t ,  T = t , - t .  (6) 

Smith ( 1 9 8 8 ~ )  argues that the boundary layer splits into three zones as t + t ,  - which 
are shown schematically in figure 2. If y = Re4 Y denotes the scaled boundary-layer 
variable, then the main zone (zone 11) is inviscid and has y = O(1); here the 
velocity profile U,(y)  is generally rotational and is shown in figure 2 with an arbitrary 
shape. The streamwise velocity in region I1 is expanded in the form 

where U,@) is the (arbitrary) velocity profile at x = 2, as t + t,. The profile functions 
U,, i = 1,2, . . . are determined from inviscid equations, and a viscous wall layer 
(region I) is required in order to reduce these functions to relative rest on the surface ; 
the solution in region I depends on 5' and the scaled variable 71" = T i y .  The third zone 
in figure 2 is a critical layer across which the profile function U, in (7) exhibits a jump 
in velocity. The critical layer is mainly inviscid and nonlinear. Smith ( 1 9 8 8 ~ )  has 
obtained detailed solutions for zone I11 and from this determines that the pressure 
develops irregular behaviour as t + t ,  with 

p-p,, = ~ ( ( x - x , ) ; )  as x + x , + ,  (8) 

where p, is a constant. The pressure gradient is therefore singular as t + t ,  and the 
theory predicts that the maximum values of the pressure gradient and normal 
velocity are of the form 
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where C, and C, are constants. The shear-stress distribution on the surface is also 
predicted to develop a singularity with a local maximum behaving according to 

c3 
N- 

Twmax (t, - t)‘ ’ 
where C3 is a constant. 

In  the present study, interacting boundary-layer solutions were obtained for the 
model problem described in Part 1 (see also $ 2  below) over a range of Reynolds 
numbers ( 105-108). All previous IBL calculations cited above were carried out using 
a conventional Eulerian method to compute the boundary-layer flow and 
encountered severe difficulty in accurately evaluating the intense variations that 
develop as the surface flow starts to focus into an eruption. The present results are 
the first IBL solutions obtained using a Lagrangian algorithm for the boundary 
layer ; this permits computation well beyond the times at  which an Eulerian scheme 
would typically fail, and in any case enables numerical integrations to be carried out 
all the way through to the formation of a singularity. The use of Lagrangian schemes 
and their clear advantages over Eulerian formulations have been reviewed recently 
by Cowley, Van Dommelen & Lam (1990) in the non-interactive context. It is found 
in the present work that rather than delay the onset of singular behaviour, the effect 
of interaction is to promote boundary-layer breakdown a t  an earlier time. The 
present results confirm the scalings obtained by Elliott et al. (1983) for the first 
interactive stage and, although the unsteady separation singularity appears to be 
relieved through the IBL approach, a second singularity quickly occurs. Fur- 
thermore, the present results appear to confirm quantitatively that this second 
singularity is that described by Smith ( 1 9 8 8 ~ )  in what was termed ‘moderate break- 
up ’ of the interacting boundary-layer formulation. 

2. Interactive equations 
Consider a rectilinear vortex of strength K which is placed in an otherwise stagnant 

flow above an infinite plane at  a distance a from the wall at  time t = 0. As discussed 
in Part 1, inviscid theory predicts that such a vortex will remain at  constant height 
a from the wall and be convected to the right in the velocity field of its image with 
speed V,  = ~ / 2 a  (Walker 1978). Upon the initiation of this motion, a thin unsteady 
boundary layer develops along the wall. The boundary-layer thickness is initially 
O(Re-i), where the Reynolds number may be defined by 

and v is the kinematic viscosity. To define dimensionless variables, it is convenient 
to adopt a and V,  as a representative length and velocity, respectively, corresponding 
to distance from the wall and vortex speed at  t = 0. Let (x, Y) denote Cartesian 
coordinates measuring distance tangential and normal to the surface respectively, 
with corresponding velocity components (u, V ) .  In the boundary layer, the scaled 
variables 

y = ReiY, v = ReiV (12)  

are utilized and the velocity components are (u ,v) .  Let (XJt ) ,  Y,(t)) denote the 
position of the vortex at time t relative to the wall and let (Uv(t) ,  Vv(t))  be the velocity 
of the vortex. In the limit problem Re + co , previously considered in Part 1, the vortex 
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trajectory is determined from the leading-order inviscid solution, for which the sole 
influence on the vortex is the image vortex below the plate. It was shown that 

Y,= 1, U , =  1, V,=O (Re+co), (13) 
and X, increases linearly with t .  In the present study, large but finite values of Re are 
considered using interacting boundary layer (IBL) concepts. In  the IBL approach, 
the influence of the boundary layer is assumed small but is nevertheless accounted 
for through an interaction condition. In the following development, a quasi-steady 
interactive formulation will be given. 

Consider a general boundary-layer flow described by a stream function $ defined 
by 

Matching of the boundary layer to the external mainstream requires 

and it is easily verified that 

where 

is the displacement thickness. Using (12), it can be verified that the external velocity 
distribution must have 

(18) v‘-- Y+Re-ivd(x, t )  + . . . as Y +  0, 
ax 

in order to match the boundary-layer solution. Here vd is the scaled displacement 
velocity induced near the surface by the boundary-layer flow and 

It is evident from (18) that the form of solution in the inviscid region is 

(u, V )  = (U,, V,)+Re-i(U,, V,)+ ..., (20) 

to first order. Here (U,, V,) is the leading-order inviscid solution, normally utilized in 
a non-interacting calculation procedure, while (U,, V,) are velocities associated with 
a perturbation O(Re-$. A perturbation stream function Yl may be defined by 

and since both the leading-order and perturbation velocity fields are irrotational, Y, 
satisfies the Laplace equation, as well as 

Y l - - U e S *  as Y-tO, (22) 
which follows from (18). The solution for Y, is 
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and it can then be shown that, in general, 

To evaluate the specific leading-order inviscid flow of interest here, define a stream 
function Yo such that Uo = aYo/aY, V, = -aYo /ax .  For a vortex whose instantaneous 
location is at {X,( t ) ,  Y,(t)}, Yo is given by 

and it is easily verified by differentiation that the velocity components of the vortex 
centre are given by 

dYV v,(t) = - = 0, a, 1 UV(t) = ~ = - 
dt Y,' dt (27) 

to leading order. Viewed from the laboratory frame, the inviscid motion is unsteady 
as the vortex moves above the wall. For the limit problem Re+ 00 (see Part 1) the 
inviscid motion is steady to an observer who moves uniformly with the vortex. In the 
IBL calculatioqs, the thickening boundary layer influences the trajectory of the 
vortex, but it is nevertheless convenient to transform to the vortex frame which 
convects to the right with speed U,(t). If x is now understood to measure streamwise 
distance in the vortex frame from the vortex centre, the stream function in this frame 
is 

2 + ( Y -  Y,)2 
Yo = - YU,(t) - log 

to leading order. 
The inviscid mainstream velocity at the boundary-layer edge in the moving vortex 

frame is denoted by U,,,(x, t ) ,  while Ue(x, t )  is the instantaneous mainstream 
distribution in the laboratory reference frame ; the two distributions are related by 

U,(X, t )  = - U,(t)+ UJZ,  t ) .  (29) 
A first approximation to U, may be obtained by differentiating (28), and, to leading 
order, 

In an interacting boundary-layer approach, a specific finite but large value of the 
Reynolds number is adopted and the O(Re-t) corrections to the inviscid flow induced 
by the boundary layerareevaluated. In the present situation, both thevortex trajectory 
and the velocity a t  the boundary-layer edge are influenced. The corrections to (27) 
can be calculated by evaluation of (24) and (25) at the vortex location, and it can be 
shown that 

UJt )  = 
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where the displacement velocity is given by (19). The normal coordinate of the 
vortex Y, is evaluated from 

-- dYv - V,(t), Y,(O) = 1, 
dt (33) 

with the initial condition reflecting the lengthscale used to define dimensionless 
variables. The correction to the velocity U, in (30) is evaluated by taking the limit 
Y+O in (24) and it follows that 

where the integral in (34) must be interpreted as a Cauchy principal-value integral. 
Note that the IBL procedure is only justified in situations where the second term on 
the right-hand side of (34) remains small with respect to the first. 

3. Lagrangian boundary-layer equations 
The interacting boundary layer (IBL) algorithm used here consists of two coupled 

sets of calculations at each time step, one to evaluate the development of the 
boundary layer and one to compute the influence of the thickening boundary layer 
on the external flow. The boundary-layer problem was formulated in Lagrangian 
variables, wherein the coordinates ( E ,  q )  of a large number of fluid particles at some 
initial instant in time are used as independent spatial variables. The current position 
of each fluid particle ( x , y ) ,  as well as its current components of velocity (u ,v)  are 
functions of ( & q ,  t ) ,  corresponding to where the fluid particle started in space and the 
elapsed time along its trajectory. The boundary-layer portion of the formulation is 
similar to that described in Part 1 except that the mainstream flow in the vortex 
frame is now unsteady, as well as the speed of the wall which moves to the left with 
velocity - Uv(t). The boundary-layer equations in Lagrangian coordinates are : 

- ax 
at 
- u. - (36) 

In (35), Uoo(x, t )  is the mainstream velocity distribution in the vortex frame according 
to (29), which is determined during the course of the calculation using (34). The 
boundary conditions for this system for all t > 0 are 

u=-U,(t) at q = O ;  u+U,(x,t) as q+m. (37) 

The initial conditions are that the streamwise velocity distribution is known at some 
initial instant a t  t = to, namely 

u = u,(E,q) at t = to (38) 

for known fluid particle locations in the boundary layer 

x(E, 7, t )  = E,  y(E, 7, t )  = 7 at t = to. (39) 
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A Lagrangian integration may be initiated at any time when the velocity field is 
known. In the present study, the motion was impulsively started from rest at  t = 0 
and, for a Lagrangian integration initiated a t  this time, 

uv=y,=l,vv=O a t  t = 0, (40) 

4 Ue(X,O) = V,,(X) = - x2+ 1 
a t  t = 0. 

and uo = - 1 +  Ueo(x) in (38) for to = 0. In the early stages of the motion, the 
boundary-layer flow is well-behaved and it is somewhat easier (and more accurate 
just after the impulsive start) to compute the development using a conventional 
interactive Eulerian formulation. This was carried out for a range of Reynolds 
numbers and the results from both integration procedures were found to agree well. 
In fact, the boundary layer in the initial development is very thin and interactive 
effects were found to be small ; the results of the interactive calculations over a range 
of Re were found to be indistinguishable (at least up to t = 0.25), from the results 
produced in the non-interactive limit-problem computations discussed in Part 1.  For 
this reason the interactive calculations described here were generally started a t  
to = 0.25, starting with conditions (39) and (40) and using the velocity field u pro- 
duced from the results of the Eulerian integration for the limit problem Re + 00 over 
the interval 0 < t < to. The specific value of to used is arbitrary as long as to is small 
and the effects of interaction are small. 

In the interactive problem, it is necessary to evaluate the displacement thickness, 
6*, at each time step in order to calculate the displacement velocity V, in (19) and the 
consequent influence on the external flow distribution in (34) ; this is defined in terms 
of velocities in the laboratory frame by 

It is noted in passing that u in this equation is defined in the moving vortex frame, 
as opposed to the conventional definition of 6* in (17) where u is relative to the 
laboratory frame. To calculate 6* it is necessary to evaluate the y particle positions 
through integration of the continuity equation in Lagrangian coordinates, which is 

This equation is a first-order equation for y(t,q,t) and, for a given distribution of 
X ( ~ , T , I ,  t), can be integrated along the characteristic curves which are contours of 
constant x. The integral in (42) is taken with x = constant and thus a numerical 
integration along a specific characteristic of (43) provides the necessary values 
of y and u to compute 6*. The method will be described subsequently in $5. 

4. Numerical solution of the boundary-layer problem 
To advance the solution of (35) and (36) forward in time, it was convenient to work 

in terms of variables defined on fixed finite intervals through the following 
transformations. The streamwise velocity u(t,q,t) was defined in terms of a 
normalized variable U by 

(44) u(E, 7, t )  = - UV(t) + U,(X, t )  w, q,  t) ,  
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(45) 

As discussed in Part 1 the dependent and independent streamwis? variables x,E 
(defined on the interval ( - 00, 0 0 ) )  were mapped to the variables 4,c defined on the 
interval (2,O) by 

(46) 
2 2 

2 =  1--arctanx, 6 = I--arctanE. 
R R 

In addition, the normal dependent variable y and independent variable q (defined on 
the interval ( 0 , ~ ) )  were mapped to the variables 8, $ defined on the interval (0 , l )  by 

2 2 
Q = -arctan y ,  $ = -arctanq. 

x 7c (47) 

The transformations (46) and (47) introduce the two functions 

Z(8) = ( l+COSXQ)/R,  U,,(2) = 2(1-COSX2), (48) 

into the governing equations. Here the subscript 0 in (48) is used to reflect the fact 
that U,, corresponds to the distribution of U, at t = 0, or alternatively at  any stage 
before the effects of interaction become important; consequently, it is the non- 
interactive mainstream distribution used in Part 1. 

When these transformations are introduced in (35) and (36), it is easily shown that 

The functional coefficients in (49) are given by 

In these equations 
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and (57) 

where a prime indicates differentiation with respect to the appropriate variable. The 
boundary conditions for (49) and (50) are 

U = O  at d = O ,  U - t l  as rj-tl, (58)  

4 = 0  at t = O ,  f = 2  at 6 = 2 .  (59) 

It should be noted that (59) reflects the !act that fluid particles initially at  infinity 
remain there. Furthermore 5? - 6 as t + O ,  2 and it is readily shown that all 
coefficients in (49) vanish except for T and P ;  it  may then be verified that 

tan (4x7) 
U =  erf( 2ti A )  at i= 0,2.  

Consequently, U is known all around the boundary of the computational domain. 
Fluid particles on the wall and at  the mainstream remain there, but their streamwise 
position changes with time and the values of 4 on 9 = 0 , l  at any time are readily 
computed from (50). 

The interacting boundary-layer problem was solved iteratively at  each time itep. 
The principal numerical scheme to advance the boundary-layer solution for 0 < < 2 
and 0 < 4 < 1 is the upwinddownwind alternating-direction-implicit (ADI) method 
described in Part 1 for integration of the limit problem Re+m (see also 
Peridier & Walker 1988). The main difference in the computational algorithm here 
is that an additional iteration is necessary to compute Ue(&t)  at each time step 
from the interaction condition; this aspect will be discussed in $5.  If, however, it is 
assumed that an estimate of Ue(4,t) is available at any stage in the current time 
plane, the coefficients in (51)-(55) may be evaluated and the iterative AD1 method 
of Part 1 can be implemented. Numerical integrations were carried outAwith two sets 
of meshes using 61 x 41 and then 101 x 61 mesh points in the 6,q directions 
respectively. Agreement between the two sets of calculations was good (as also 
confirmed by recent calculations by Lou 1990 on a 201 x 101 mesh) and the results 
presented here are based on the smallest set of mesh sizes used (At  = 0.02, A$ = 
0.0167). The time step was typically taken small with At = O(lOP3) initially, in order 
to keep the number of iterations at a reasonable level ; as the solution for each value 
of Re approached a singular behaviour, the time step was continually reduced. The 
convergence test was rather restrictive and required that successive iterates for U 
agree to within four significant figures at  all points in the mesh; this condition was 
typically satisfied in 3-10 iterations per time step. 

5. Numerical solution of the interaction condition 
The external flow distribution in an IBL formulation is influenced by the changing 

boundary-layer thickness and the central feature derived from the boundary-layer 
calculation is the displacement- thickness distribution which, from (42) and (44), is 
given by 



Vortex-induced boundary-layer separation. Part 2 145 

n ” t 

2 so 0 

r” 
FIQURE 3. Schematjc diagram of integration along a characteristic42 = constant in the 

([,$-plane starting from a point on the wall at 5,. 

In terms of the transformed variables 

where the integral in (62) must be carried out along a path with P constant. Such 
paths are characteristics of the continuity equation (43), which in transformed 
variables is 

where 

The subsidiary equations are 

--- - ds”, _ -  d i  dg dg 
A B C  

_ - -  (65) 

where s” is a variable along the characteristic curves D = constant. For a given 
distribution of a(& f ,  t )  at time t ,  B;n integration of (65) may be initiated at the wall 
to generate a sequence of points (ck, e”), k = 1,2,3, . . . , defining a particular contour 
$ = constant ; this integration also establishes the corresponding values of gk along 
the contour and makes possible the integration indicated in (62) to find 8*. Let Ak 
and Bk be the values of A and B at the kth point on the contour, as illustrated 
schematically in figure 3. The step size in ŝ  along the contour, from the kth point to 
the point (k + 1) was selected so that 

A i  As” = 
[(Ak)2 + (Bk)2]i ’ 

which restricts the step along the contour to one mesh length in i. This step size was 
determined to be sufficiently small to ensure accurate evaluation of ij and S*. 
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The subsidiary equations (65) were integrated from the wall in a step-by-step 
manner using a predictor-corrector method. Assume that the g k  is known at  the kth 
point on a constant-$ contour at  ((*, $*) and th? object is to calculate the solution at  
the point k+ 1. F o  obtain predicted values of ((*+l, $,+l), the coefficients in (64) were 
evaluated at (Ek,ik). It is, in general, necessari to evaluate these coefficients a t  
locations which are not at  a mesh point in the ((,$)-plane. To accomplish this task 
at any point in the procedure, a four-point bivariate interpolation formula 
(Abramowitz 87, Stegun 1964, p. 882) was used with the four points in the mesh 
surrounding the point in question ; the gradients in A and B were evaluated using 
central differences. The corrector formula used was 

for gk+l ,  for example, with similar approximations to (64) being obtained for tk+l and 
$*+l. The corrector algorithm is second-order accurate in As" and the step size used 
was small enough so that only a single application of the corrector was necessary a t  
each stFp. As the integration proceeds along the constant4 characteristics, values of 
U at (ck,$k)  were obtained by bivariate interpolation of the solution of (49) at the 
current time t .  The displacement thickness 6* was obtained using these values by 
evaluating the right-hand side of (62) with an integration procedure based on the 
trapezoidal rule. In practice, the integration for 6* along the characteristic was 
terminated once the integrand in (62) was sufficiently small ; consequently, each 
integration was generally stopped before the line $ = 1 was reached. By carrying out 
an integration along several characteristics, values of 6* were obtained at a number 
of values of 4 that define a mesh in 9 for the outer inviscid problem. In principle, 
there is no reason why the mesh spacing in 6 need correspond to that in 9, other than 
for convenience; in the present study sufficient integrations of (65) were carried oyt 
to define a displacement-thickness distribution on an 'outer' mesh with A9 = A(. 

At a given time t ,  once an estimate of a*($, t )  is available, the velocity components 
of the vortex can be estimated from (31) and (32) which become 

tan&(l-$) (S*Ue)' 
tan2 {in:( 1 - $)} + y2, d4, 

V,(t) = - d0, (69) 

where a prime denotes differentiation with respect to 2. With estimates of a* and U, 
available on a mesh defined by 

$ , = i A $ ,  i=O,1 ,2  ,..., N ,  (70) 

where A$ = 2/N and N is the total number of subdivisions, the vortex velocity 
components were evaluated by integrating (68) and (69) using the trapezoidal rule 
and central differences to compute the derivatives. The current distance of the 
vortex from the wall was then computed from the following approximation to (33) : 

Y, = Y:++At(V,+V:). (71) 

Here the asterisk denotes values in the previous time plane a t  t* = t -  At. It is worth 
commenting that the influence of the boundary layer on the trajectory of the vortex 
was found to be very small for all Reynolds numbers over the time intervals 
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considered in this study; departures from the steady values of Y, = 1, U, = 1, V ,  = 0, 
that are appropriate for the limit problem Re+ co (Part l), were slight. 

In contrast, the computed inviscid velocity distribution U,(P, t )  was found to 
develop substantial deviations from the limit-problem (Re + co) distribution in a 
very narrow streamwise band near the location where a boundary-layer eruption 
develops. It may be inferred from (19) and (34) that, in an interactive boundary- 
layer approach, Ue satisfies an integro-differential equation involving a Cauchy 
principal-value integral. The accurate and efficient evaluation of U, at each time step 
was found to be the most critical, as well as the most challenging, aspect of the IBL 
computations. Define a general Cauchy integral on an infinite domain by 

C(X, t )  = - 
X Im --Q, F(s ,  x - s  t ,  d5 , 

(73) 
a 

ax 
where in this study F(x ,  t )  = --(Ue(x, t )  S* (X ,  t ) } .  

The interaction condition (34) may now be written in the form 

Ue(X, t )  = - 4yv +Re-+C(x, t ) .  
X 2  + P, (74) 

In  conventional IBL computations, the distribution of U, is estimated from the 
previous iteration in order to compute C(x,  t )  in (72) and hence define the next iterate 
for U,. In view of the fact that U, eventually develops intense local variations in both 
space and time in the present problem, this approach proved unacceptably slow. In 
addition, the standard method of assuming that F in (73) may be approximated as 
constant over each subinterval of the indicated integration is only first order 
accurate in A5 (Napolitano, Werle t Davis 1978) ; such schemes were found to be 
very inaccurate in the present calculations where the displacement surface develops 
a ‘spike’ distribution. For these reasons, some care was taken to develop a second- 
order-accurate method for the Cauchy integral (similar to that described by 
Napolitano et al. 1978), as well as an efficient method to compute Ue(x, t )  from (74). 

In a quasi-steady approach, t is held fixed at any stage and, omitting the time 
dependence, the evaluation of the Cauchy integral (72) at a typical point x, in the 
mesh is considered. The integral was split into two parts according to 

C(X*) = f J ( X , )  +L(x,) ,  (75) 

where S, is the main part of the integral defined by 

s, = S(X,) = :sfhF$$, 

R is a large fixed value of x to be selected and L, represents the asymptotic tails of 
the integral, namely 

The distributions U, and 6* were evaluated as functions of P defined on the interval 
(0,2) using the discretization in (70). The contributions to G for large x (i.e. for 3 near 
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0 or 2 )  were evaluated using (77), while the integral in (76) was written in terms of 
P according to 

Values of R and E were selected as 

E = i A f ,  R = tan{$It(l-iA$)), 
and H(B) is given by 

(79) 

Equation (78) may be written as the sum of integrals 

and it may be noted that the nodes P, are at the midpoints of the corresponding 
interval of integration. The simplest approach to evaluating (81) is to assume that 
H($) is constant over each interval and equal to. the value a t  the nodal point P, (see, 
for example, Henkes & Veldman 1987 and Riley & Vasantha 1989). However, as 
noted by Napolitano et al. (1978), such schemes are only first-order accurate in AP. 
To obtain a second-order method, take 

H ( f , )  = H j + ( P - f j ) H i ,  (82 )  

on the j th  interval ( f ,  -8 ,  P j  + E )  ; here Hi denotes the first derivative of H evaluated 
at P,. The work of Napolitano et al. (1978) shows that a representation of the form 
(82) leads to second-order accuracy for C(xi ) .  The following second-order-accurate 
formulae were used to evaluate H j  and Hi from (80): 

7c COS ( + I t f j )  sin ( i d j )  
Hi = 4AP {(S*Ue),+, - (S*Ue)j-J + (Af)Z {(S*Ue)j+,-2(S*Ue)j + (d*ue)j-1}* 

(84) 
A second-order-accurate approximation to (78) is the form 

N - 1  1 
S - -sin (+It&) {au H,  +&Hi},  

i - x  j-1 

where formulae for the constants at, and & are given in the Appendix. It should be 
noted that finite-difference representations of H, and Hi other than (83)  and (84) are 
possible and several alternatives were tried. In  particular, as a ‘spike’ starts to 
develop in the displacement-thickness distribution, (83) and (84) may potentially be 
applied across the spike. Therefore, a number of attempts were made to isolate the 
current streamwise location of the spike that developed in the latter stages of the 
integrations, and to implement one-sided difference formulae on either side. However, 
these procedures did not change the results significantly, and since they involved 
substantially more computation, the bulk of the calculations were based on (83) and 
(84). 
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Consider now the tail portions of the Cauchy integral in (77). For 1x1 large the 
solution for U approaches the plane-parallel flow given by (60), and it can be shown 
using (61) that 

Since the strong interactions occur in regions where x is O ( l ) ,  the dominant part of 
U, is given by the first term on the right-hand side of (34), and it is easily shown from 
(34) and (73) that 

&*(i, t)  +sz(t) = 2(t/n:)i as 1x1 -+ CO. (86) 

U F - 3  +-... u5 as I x ~ + c o ,  
2 3  2 5  

where u3 = -8Y,(t)Sz(t), u5 = -2u3Y2,. (88) 

(89) 

It follows from the results in the Appendix that L, in (77) is closely approximated by 

L, u3{a3(x,) + b3(x*)} + U&5(XJ + b5(x,)l+ . -. 9 

where the a, and b, are given in the Appendix. 
Upon substitution of (83), (84), (85) and (89) into the interaction condition (74), it 

may be confirmed that, for a given distribution of S*, a set of linear algebraic 
equations for Ue, (i = 1 , 2, . . . , N -  1) is obtained, which may be represented in matrix 
form as 

Here / is the identity matrix and M is the coefficient matrix defined by 

( / -M) we = A .  (90) 

where S, = sin ($ti,), C, = cos ( + x i j ) .  

Note that Ue, = U,, = 0, and in (91) 

a i , O  = N = Pt, 0 = Pi, N = O .  (93) 

In (91), We represents the vector of values of U to be found at the interior points 
i = 1,2,3,  . . ., N -  1 and the components of the right-hand side vector are given by 

e i  

for i = 1,2, . . . , N -  1. At any stage the matrix problem defined by (90) was solved for 
U, using LU decomposition with scaled partial pivoting. 

To compute the solution forward in time, both the boundary-layer and external- 
flow problem must be advanced simultaneously, and to accomplish this a 
predictor-corrector strategy was employed. Assume that the entire solution is known 
at time t*. The value U$ and the distribution Uz were used to estimate the 
corresponding values at  time t and the boundary-layer problem was solved to find 
'predicted ' distributions of the dependent variables $(& 7, t )  and U(t7 7, t) and hence 
a predicted distribution a*($, t ) .  The predicted displacement thickness was then 
utilized to solve the outer-flow problem to obtain corrected values of U, and U,. A 
corrected boundary-layer solution was then obtained and the process was iterated 
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until convergence occurred. This was considered to have occurred when two 
successive iterates for U agreed to four significant figures a t  all points in the mesh. 
Typically 3-10 overall iterations were required per time step. 

6. Calculated results 
The evolution of the boundary layer was considered for four Reynolds numbers, 

namely Re = lo5, lo', lo' and lo*. In all cases the computed results are virtually 
indistinguishable from those obtained for the limit problem Re + 00 discussed in Part 
1 until the point in time when a strong interaction begins to develop. Even at  this 
stage, the only major differences from the limit solution (Re -+ co) occur in a narrow 
streamwise band defining the location where the boundary layer is becoming 
eruptive. Calculations were carried out for each case until a singularity evolved in the 
boundary-layer solution. This was determined through a combination of criteria, the 
first of which involved tracking the location of the minimum of the norm-gradient 
function, 

As discussed in Part 1, Jlr +. 0 as a stationary poiqt forms in the x field. At  any time, 
the position of the particle with minimum N(EM,qM) was located as well as the 
contour of constant x = xM passing through the point. As t increased, the absolute 
minimum in Jlr was observed to decrease monotonically. As in Part 1, a singularity 
was considered to have occurred once the location of minimum ,Ar reached the zero- 
vorticity line. As t + t , -  it was observed that, in accordance with the theory of 
Smith (1988a), the wall shear, as well as dp/dx and w at the boundary-layer edge, 
increased to large values. A summary of the calculated singular times is given in table 
1. Here, &,(Re) is a somewhat subjective quantity defined as the first time a 'spike' 
was observable in the displacement surface, thus corresponding to the first hint of the 
onset of strong interaction ; following this event all cases proceeded rapidly towards 
eruption and a singularity at  t,(Re). These times, as well as the streamwise location 
of the singularity xs(Re) and the velocity of the singularity -K(Re) (see Elliott et al. 
1983), are listed in table 1. It is evident that both to, and t ,  decrease with decreasing 
Reynolds number, and therefore the influence of interaction does not postpone or 
mitigate the evolution of a singularity but acts to hasten breakdown of the 
boundary-layer solution. It is also of interest to note that in all cases the singularity 
is moving upstream (in a direction opposite to the local external flow) at  t,. 

In  all cases considered, the boundary layer develops a narrow eruptive zone 
centred on x, as t + t ,  which may be seen in the temporal evolution of the 
displacement thickness in figure 4. For large Re, the spike in displacement thickness 
evolves rapidly near the end of the calculation. The case Re = lo7 is shown in figure 
4(a)  where the similarity between the sharp spike obtained in the limit calculation 
in Part 1 should be noted. As Re decreases, the abrupt evolution of the spike still 
occurs, with the only noticeable change in shape being a slight thickening of the base 
of the spike. It is worthwhile mentioning that in view of the fact that the Reynolds 
number is now finite (as opposed to the limit problem Re+ a), the top of the spike 
is at a finite distance from the surface. At  Re = lo5, a new feature enters as illustrated 
in figure 4 (a) corresponding to the evolution of a smaller secondary spike to the left 
of the primary eruptive zone; this aspect will be discussed subsequently in 
connection with the instantaneous flow patterns. 
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FIQURE 4. Temporal evolution of displacement thickness S* at times t = 0.25 (0.10) ts ;  results 
are shown in the laboratory reference frame. (a) Re = lo7; (b )  Re = lo5. 

Re to, t ,  XS (-K) 
a3 0.890 0.989 -0.214 -0.521 
1 0 8  0.820 0.897 -0.152 -0.686 
1 0 7  0.752 0.819 -0.091 -0.671 
10' 0.680 0.724 O.Oo0 -0.321 
1 os 0.623 0.645 0.126 -0.035 

TABLE 1. Parameters associated with boundary-layer breakdown, for both the limit problem and 
interacting studies. Note that xs and (-K) are in a frame of reference moving with the vortex. 

For all the Reynolds numbers considered, the instantaneous streamlines are 
essentially the same in the early stages of the motion as for the limit problem dis- 
cussed in Part 1. A complete set of plots is given in Peridier & Walker (1989) ; only a 
limited selection will be described here. The instantaneous streamline patterns at  
t = t ,  are shown in figure 5(a, b)  for Re = los. The pattern shown in figure 5(a )  is 
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FIGURE 5. Instantaneous streamlines at t, for Re = lo6; arrows indicate flow direction and 
( b )  is on an enlarged streamwise scale. 

typical over the entire Reynolds-number range with the flow focusing into the 
erupting spike on the left-hand side of the secondary eddy. The flow field becomes 
increasingly complex near the spike as Re decreases. In figure 5 ( b )  the flow patterns 
at t ,  are shown on an expanded streamwise scale where i t  may be seen that the 
secondary eddy labelled ‘a’ has split and now contains two inner co-rotating eddies 
labelled a1 and a2. In addition a third tertiary eddy (labelled b) has just formed to 
the left of the spike. 

The instantaneous streamlines for Re = lo5 at t, are shown in figure 6 ( a )  where it 
may be seen that the secondary eddy (labelled a) is somewhat smaller than for 
Re = lo6, since the breakdown time t,(Re) is earlier with decreasing Reynolds number. 
The tertiary eddy (labelled b) is clearly evident at this time, and in addition to the 
main interaction associated with the secondary eddy, the instantaneous streamlines 
are developing a kink due to the tertiary eddy. This is the reason for the second spike 
in displacement thickness that occurs for Re = lo5 and that was noted in connection 
with figure 4(b ) .  It should be mentioned that a conventional Eulerian algorithm 
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would probably have great difficulty in coping accurately with the severe flow 
variations that are evident in figures 5 and 6; however, in the Lagrangian algorithm 
a large number of fluid particles move into the eruptive zone which is therefore very 
well resolved. An expanded view of the complex flow patterns that occur near the 
surface for Re = lo6 is shown in figure 6 ( b )  where the co-rotating internal eddies a1 
and a2 within the secondary eddy and the kinking streamlines due to the tertiary 
eddy may be seen. The formation of a tertiary eddy has also been found in the 
interactive calculations of a vortex convected in a uniform flow above a wall (Chuang 
& Conlisk 1989). Tertiary eddies have also been observed near the surface in an 
experimental study of the influence of a vortex ring impacting a wall, where both the 
tertiary and secondary ring were ultimately ejected from the boundary layer in a 
strong viscous-inviscid interaction (Walker et al. 1987). 

Finally, the temporal development of the wall shear 
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FIGURE 7. Temporal evolution of the wall shear. (a)  Re = lo7; ( b )  Re = lo6; ( c )  Re = los. 
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Re 4 Interval log (4 b 

lo8 0.897 [0.819, t,) -0.391 f0.065 -0.252f0.016 
1 0 7  0.819 [0.805,0.816] -0.778 k0.174 -0.253 f0.035 
1 O6 0.724 [0.680, t,) - 0.295 f 0.092 -0.263k0.022 
1 0 5  0.645 [0.634, t,) 0.892 0.127 -0.234f0.032 

TABLE 2. Summary of regression study for temporal behaviour of wall shear near 4; 7, = O(t,-t)b ; 
values of ts for each Re are given in table 1. The theoretical prediction is b = -0.25 (Smith 1988a). 

is shown in figure 7 for Re = lo7, lo6, lo6. In all cases the evolution is essentially 
identical to that associated with the limit problem Re+ co, except in a narrow 
streamwise band when interaction is significant as t + t , - .  In  figure 7 ( a )  the 
temporal development is shown for Re = lo7, where what appears to be a small 
distortion is evident near x, = -0.091. For Re = lo6 in figure 7 ( b )  and Re = lo6 in 
figure 7(c), the irregularity that develops in the wall shear is clearly evident. The 
theory of Smith (1988 a) predicts a singularity in the wall shear as t + t,, according to 
(10). As t+t,  the 2-location corresponding to the minimum gradient (in (95)), &, 
moves toward 2,, the location of the singularity. Values of 7, at iM were recorded 
over the time intervals indicated in table 2 and a least-squares curve fit to the 
relation 7 ,  = c(t, - t ) b  was carried out to determine c and b. The values of b obtained 
in this process have a rather small standard error and they support the theoretical 
prediction of Smith (1988~)  that b = -0.25. Generally, the behaviour of the wall 
shear at ZM was found to be a reasonably reliable criterion for the evaluation oft,, 
since 7, increases monotonically there as t + t,. The Lagrangian numerical 
integrations (as in Part 1) can be continued beyond t, (although the results are not 
meaningful), since a catastrophic failure of the scheme does not occur at t,. The onset 
of erratic behaviour in 7, was found to be a good indication that the calculation had 
gone beyond t,. 

7. External flow development as t + t ,  

For the limit problem Re + co, the mainstream velocity is steady in a frame of 
reference convecting with the vortex. For the interacting boundary-layer cal- 
culations, Ue is unsteady owing to the influence of the boundary layer. However, the 
only significant deviation from the limit distribution occurred as t + t, near x = 2,. In 
figure 8(a) ,  Ue is plotted a t  time t, for Re = 10'; a slight deviation from the limit 
distribution may be noted near x ,  = -0.091. With decreasing Re in figure 8 ( b ,  c), an 
increasing departure from the limit distribution near x, may be observed. In figure 
8 ( c )  there are two spikes in U,, the larger one being associated with the singularity 
that develops adjacent to secondary eddy a in figure 6 ( a )  and the smaller with 
tertiary eddy b. 

The pressure distribution at  t = t ,  is shown in figure 9(a, b) for Re = lo7 and lo6 
respectively. For Re = lo7, a sharp but small distortion occurs near x, = -0.091 in 
a distribution which is otherwise identical to the steady pressure variation associated 
with the limit problem Re + co. For Re = lo*, the distortion near x, is barely 
noticeable when plotted on this same scale (Peridier & Walker 1989). As Re decreases, 
the local changes in the pressure distribution become sharper but are still 
concentrated in a very narrow band near where an eruption of the boundary layer 
is developing. It may be noted in figure 9(b), for Re = lo6, that the local changes in 

6 m m  232 
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FIQURE 8. Mainstream velocity distribution at t,. (a)  Re = lo'; (b )  Re = los; (c)  Re = lo5. 
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FIGURE 9. Mainstream pressure distribution at t,. (a)  Re = lo'; (b)  Re = 10'. 

pressure due to the interaction have magnitudes comparable to the base steady 
pressure associated with the limit problem. These sharp changes in pressure develop 
rapidly as interaction evolves as t + t ,- . 

The dynamical pressure gradient for the problem is given by 

au au, 
ax ax at 

-- ap - - (ue-u")A+-,  (97) 

where U, is obtained from (74) and U J t )  is the vortex speed. The pressure gradient 
at t ,  is shown in figure 10(a) for Re = lo8 where the departure near xs = -0.152 from 
the limit distribution, in the form of two spikes, should be noted. With decreasing Re 
the local behaviour in apJx  near x,  becomes more severe as indicated, for example, 
in figure 10(b) for Re = lo6. The analysis of Smith (1988~)  predicts that aplax is 
O( ( x  - xs)-g) as t -+ t,, and while a precise confirmation of this functional behaviour is 
difficult to establish, the behaviour depicted in figure 10 certainly suggests a 
singularity. To show the rapid evolution, the pressure gradient at t,-0.015 and t, is 
plotted in figure 11 (a, b), respectively for Re = lo5. Note the change in scale in these 

6-2 



158 

8 

5 

2 
- dP .- 

d x  
- 1  

- 4  

- 7  - 

22 

16 

10 

V .  J .  Peridier, F .  T .  Smith and J .  D.  A .  Walker 

-4 -3  -2 - 1  0 1 2 3 4 
X 

-8  

- 14 

- 20 
- 5  -4  - 3  -2 - 1  0 1 2 3 4 5 

FIGURE 10. Mainstream pressure gradient at t,. (a) Re = lo8; (b)  Re = 10'. 
X 

figures and that the local spikes that finally develop in the interaction zone become 
much larger than the original pressure gradient induced by the vortex. 

The predicted behaviour of the maximum pressure gradient and displacement 
velocity obtained by Smith ( 1 9 8 8 ~ )  is given in (9). A regression analysis was carried 
out on the present results in a manner similar to that described in connection with 
table 2, i.e. by tracking the values of these quantities at  the point of minimum 
gradient xM as t + t ,  and xM -+ x,. Two aspects of the regression analysis should be 
noted. First the regressions were carried out over time intervals on which the values 
of ap/ax and V, a t  xM had a well-defined trend, which is generally in the terminal 
stages of the calculation near t,. In some cases, the data became somewhat erratic 
near t ,  and the regression range was terminated slightly in advance of t,. The 
intervals used for the regression are shown in tables 2 4 .  The second point is that V, 
and ap/ax are considerably more difficult than 7, to evaluate accurately as t + t , .  
Nevertheless, tables 3 and 4 summarize the results of regression analysis for relations 
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FIQURE 11.  Temporal evolution of the mainstream pressure gradient as t+t, for Re = 10'. 
(a)  t = t,-0.015; (b)  t = t,. 

Re t, Interval 1% (4 b 

lo8 0.897 [0.855,0.890] - 1.43 f 1.03 -0.778f0.28 
107 0.819 [0.813, t,) -3.85 f0.97 -1.080+0.61 
lo6 0.724 [0.710, t,) -2.39f 1.69 - 1.110f0.33 
lo6 0.645 [0.023, ts) -17.0+2.90 -4.640+0.70 

TABLE 3. Summary of regression study for temporal behaviour of pressure gradient near x = xs; 
dp/dx = O(t,-t)b.  The predicted theoretical value is b = -1  (Smith 1988a). 

It may be seen from tables 3 and 4 that the present results are in broad agreement 
with the theory of Smith (1988a) which predicts that b = - 1, with the sole exception 
being the pressure gradient for Re = lo5. It should be noted, in line with the second 
point above, that the quantitative evidence here is not as strong as for the wall shear 
in table 2 ; the value of b = - 1 is generally within the 95% confidence intervals in 
tables 3 and 4, but there is a rather large standard error. 
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Re 4 Interval log (4 b 

1 O8 0.897 [0.855,0.890] -2.81 k 1.07 -1.24k0.31 
107 0.819 [O. 8 10, t,) - 1.55 k0.53 - 0.957 & 0.094 
1 os 0.724 r0.669, t,) -0.823f0.97 - 1.03 k 0.18 
106 0.645 [ O . 6 4 O , t 8 )  0.53f 1.32 -0.94 k0.21 

TABLE 4. Summary of regression study for temporal behaviour of v , , ,~ ;  &(iJ = O(t,-t)*. 
The predicted theoretical value is b = - 1 (Smith 1988a). 

8. Comparison with asymptotic theory 
The objective of this section is to show that the interacting boundary-layer results 

are also consistent with the temporal and streamwise scales derived by Elliott et al. 
(1983) for the first interactive stage (cf. figure 1) .  This is possible here since it is 
anticipated that the interacting boundary-layer solutions will closely follow the same 
development as the limit solution (Re + co). However, interaction relieves the 
unsteady separation singularity discussed by Van Dommelen k Shen (1982), Elliott 
et al. (1983), and in Part 1, the IBL solutions then proceed rapidly to the interactive 
singularity structure of Smith ( 1 9 8 8 ~ ) .  Nevertheless, the length- and timescales of 
the first interactive stage should be contained within the IBL results, for large values 
of Re. 

Consider first the timescale associated with the first interactive stage given in (1) .  
As discussed in 81, numerical solutions of the interactive problem given in (3)-(5) 
have not yet been obtained; however, a singularity is expected to develop at  finite 
time and let t,, and XI, denote the scaled time and streamwise position (cf. (1) )  at 
which this breakdown occurs. It is believed that the quantity t,, is related to the 
breakdown times in the interactive problem by 

t,, = Re&(t,(Re) -t,(oo)), (99) 

where t,(Re) is the breakdown time at a finite value of Re and t,(ao) is the 
corresponding value for the limit problem. A regression analysis of the data in 
table 1 was carried out for a relation of the form 

log (t,(co)--,(Re)) = a+blogRe, (1Oo) 

a = 1.21k0.36, b = -0.190+0.24, (101) 

and the estimated values of a and b are 

where the errors represent 95 YO confidence intervals. Since & = 0.182, the estimate 
of b is in good agreement with the scale-predicted by Elliott et al. (1983). 

Next consider the streamwise scale of the eruptive zone which is predicted to be 
O(Re-A) by Elliott et al. (1983). The values of the breakdown locations z,(co) and 
z,(Re) given in table 1 represent distances from the origin in a reference frame moving 
with the vortex. In order to make a comparison, it is necessary to express these 
distances in a common frame. To this end consider a laboratory reference frame 
whose origin corresponds to the instantaneous location of the vortex for the limit 
problem at t , (co) ;  for the cases at finite Re, the vortex is assumed to pass the same 
location at ,?,(Re). In the laboratory frame, the velocity of the singularity is 

U,(s,(Re)) = U,-K(Re). (102) 

The vortex velocity U, = 1 + O(Re-4) and was found to be close to 1 during the course 
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of the integrations, with the maximum deviation being on the order of 1.004 for 
Re = lo4 a t  t = t,. Taking U, = 1, the analysis of Elliott et al. (1983) suggests 

(103) 

(104) 

e = 3.05k0.23, f =  -0.295f0.015. (105) 

x,(Re)-x,(co)  +Ue, Us(t ,(co)-ts(Re)) = O ( R e 4 ) .  

A regression analysis on the relation 

log &(Re) - x,( co) - {K(Re)  - 1) {t,( co) - t , (Re)}) = e +flog Re,  

using the values listed in table 1 produced the following results: 

Since A = 0.273, the value off is in agreement with the scale predicted by Elliott 
et al. (1983). 

9. Conclusions 
The interacting boundary-layer results obtained here show fairly firmly that a 

singularity develops in the interactive formulation a t  finite time. Consequently, the 
utility of conventional interacting boundary-layer methods is believed to be limited 
to computing unsteady separation up to the onset of interaction with the external 
flow and no further. This conclusion is in agreement with the recent theory of Smith 
(1988a) but is apparently at variance with three recent computational studies 
(Henkes & Veldman 1987; Cebeci et aZ.1988; and Riley L Vasantha 1989) which 
suggest that conventional IBL methods may relax the singularity which is known to 
occur in the limit problem. The apparent discrepancy may be due in part to the use 
of first-order schemes in the cited studies for evaluating the Cauchy integral in the 
interaction condition. In a fourth computational study, Chuang & Conlisk (1989) 
used a second-order method for the Cauchy integral and eventually encountered a 
severe instability in the IBL computations which they attributed to a possible 
singularity. A further difficulty with the aforementioned IBL studies is that they 
were carried out using a conventional Eulerian formulation for the boundary-layer 
problem. Such methods usually are not able to properly resolve the flow field as an 
eruption starts to develop, because the streamwise extent of the erupting zone 
narrows progressively and ultimately reaches a stage wherein adequate resolution 
using a fixed mesh in space in the Eulerian frame is impossible. In principle, some 
type of time-dependent adaptive mesh algorithm (see, for example, Riley & 
Vasantha 1989) may permit accurate evaluation of such eruptive flows in the 
Eulerian formulation. The Lagrangian formulation seems the best currently available 
method to accurately track the erupting flow toward an interaction. 

The present results confirm the Reynolds-number dependence of the streamwise 
length- and timescales described in the analysis of Elliott et al. (1983) for the first 
interactive stage. The effects of interaction relieve the separation singularity (Van 
Dommelen 1981) but only for a brief period of time. The present results also show 
that the solution evolves toward the interactive singularity structure described by 
Smith (1988a), in which the wall shear, pressure gradient, and normal velocity 
become singular at  a streamwise location x,  as t+ t , .  The present results appear to 
closely confirm the asymptotic theory. Velocity profiles near xs are shown in figure 
12 for Re = lo5 and are suggestive of the three-tier structure described by Smith 
(1988~)  and sketched in figure 2. It may be noted that in contrast to the terminal 
structure of the limit problem (Part 1) where the profiles are very flat near 2, as 
t+t,(co), the profiles in figure 12 depict a rotational flow near x,. We observe, as an 
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FIQURE 12. Velocity profiles near z8 at t = t ,  for Re = 10’; E‘ = 0.0045. 

aside, that in general terms the present work tends to support the view that break- 
up can occur in any unsteady interacting boundary-layer formulation at finite time 
(Smith 1988a) ; subsequent theoretical and computational studies in progress are 
adding further support. There is also an analogous situation regarding break-up in 
steady interactive separation (Smith 19883; Smith & Khorrami 1991). 

The present interacting calculations show that the effect of interaction is to 
promote and hasten the breakdown of the boundary-layer solution rather than delay 
or mitigate a singularity. The breakdown time for finite Reynolds numbers t,(Re) is 
always less than that for the limit problem ts(co)  and decreases with decreasing 
Reynolds number. As Re decreases, the surface flow, in a sense, appears to evolve 
toward a more mature state just prior to breakdown and to develop complex effects 
near the surface including: (i) bifurcation of the secondary eddy into several 
substructures and (ii) the evolution of a tertiary eddy which has often been observed 
in experiments. The pressure response to the onset of interaction has been shown in 
figures 9 and 10, and it may be noted that such responses will be extremely difficult 
to resolve with current surface pressure measurement techniques. The type of 
eruptions discussed in this study are of interest relating to fully turbulent flows 
(Walker et al. 1989; Walker 1990a, b ;  Smith et al. 1990, 1991) and flows undergoing 
transition to turbulence. The main difficulty with measuring a pressure response of 
the type shown in figures 9 and 10 is that it develops very abruptly in time, as well 
as having a complex structure in a narrow streamwise band. 

Finally, it is of interest to inquire how the interactive singularity of Smith (1988a) 
can be relieved so that a practical calculation scheme can be structured to proceed 
further in time into the strong interaction. It seems likely that, it  is necessary to 
incorporate the influence of the pressure gradient normal to the surface, a t  least in 
a narrow zone bracketing the eruptive region; this aspect is currently under 
consideration (Hoyle, Smith & Walker 1991 ; Hoyle 1991) with three-dimensional 
effects also being considered. 
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Appendix 
Here the coefficients associated with the second-order method for the evaluation 

of the Cauchy integral (72) are given. First consider the main portion given by (76) 
and (78), for which the numerical algorithm is of the form (85 ) .  It is evident from (78), 
(81) and ( 8 2 )  that 

(A 1) 
a,, = ,;p dP 

-4 sin (r,, - REP) ' 

a- --I- 

r,, = i x ( i t - i , )  = (i-j)m. 
The integral (A 1) may be evaluated in closed form, namely 

1 sinr,,+sin (im) 
at, = -log { 

x sin Ti, - sin ( ixe )  

To calculate an approximation to the integral in (A 2), first note that 

sin (rt, - ~ E F )  = sin r,, - xep cos rt, + O( e2) ,  (A 5 )  
for small E. Upon substitution in (A 2), the following approximate expression for Pi, 
is obtained: 

(A 6) 
tan r 2 sin rt, - xe cos rtl 

2 sin rt, + X E  cos rl, 
{ 1 +$log I 

' t ,  = - xe cos rt, 

For rt, of O ( l ) ,  equation (A 6) has the asymptotic form 

cot r 
sin rt, 

& $tE3&+ ..., 

which may be used to evaluate Pi, efficiently for rt, larger than about in. Note that 
both a,, and Pi, decrease with increasing r,, but that the rate of decrease in Pi, is much 
more dramatic. 

Next consider the evaluation of the tails of the Cauchy integral defined in (77) 
when the asymptotic expansion of F is known for large 1x1 (cf. (87)). For terms in F 
which are O ( X - ~ ) ,  it is evident from (77) that the evaluation of integrals 

for xt + 0 ,  is required and 

for x,  = 0. In  the present application, the required integrals are 

for x1 9 0, where y = x , / R .  For x( = 0 

a3(0) = b3(0) = - 1 / ( 3 d 3 ) .  
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1 
a,(%) = W 1 Y P  +Y(l+ Y) ( 9 + i Y ) )  + 1% (Y - 1I2l, 

b,(xr) = - W - Y ( l - - Y )  2xx: (%-kY))-log(Y+1)21 (A 14) 

(A 13) 

1 

for xi $: 0 and 

Note that from the definition of R in (79) 

~ ~ ( 0 )  = b, = - 1/(5xR5). (A 15) 

IyI = Ixr/RI < 1 for all i .  (A 16) 
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